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A detailed investigation of the conditions for the formation of X-ray shift fringes

is carried out, aiming to apply these patterns to investigations of crystal

imperfections. Expressions for the amplitudes and X-ray intensity distribution

are obtained for a two-crystal interferometer, in which the interplanar distance

between two re¯ecting planes, d, has a relative change �d=d ' 10ÿ8 ÿ 10ÿ5. It is

theoretically proven and experimentally con®rmed that the value of the period

of interference bands essentially depends on the sign of �d.

1. Introduction

It is known (Bezirganyan & Eyramjyan, 1970) that X-ray

diffraction moireÂ patterns are very sensitive to structural

distortions in the crystals from which the patterns have been

obtained. MoireÂ patterns are one of the most precise methods

for measuring very small shifts and rotations of different parts

of the same crystal or different crystals with respect to one

another (Hart, 1968).

It appears that this supersensitive method might be applied

successfully to the investigation of small structural imperfec-

tions in quasi-ideal crystals. However, the application of X-ray

diffraction moireÂ patterns for the investigation of structural

distortions in crystals is considerably limited as a result of

dif®culties in unambiguous decoding of these patterns

(unambiguous determination of the existence and location of

the deformed area). On the one hand, these dif®culties occur

because X-ray moireÂ interference patterns result from small

shifts and rotations existing between the re¯ecting planes of

the interferometer block (Lang, 1968; Drmeyan, 1987). On the

other hand, moireÂ patterns arise because of the phase shift of

superimposed beams (Tanemura & Lang, 1973; Alajajyan et

al., 1979). The latter provides an opportunity for obtaining

moireÂ patterns by means of two-block interference systems

with a narrow air gap (Authier et al., 1968).

Bezirganyan & Drmeyan (1979) showed that in the case of

two-crystal interferometers, where the interplanar distances

and directions of re¯ecting planes in the two blocks are

similar, moireÂ patterns do not arise if the incident wave is

plane. In the case of a spherical incident wave, moireÂ patterns

are also obtained when the two crystals have the same inter-

planar distances and their re¯ecting planes are exactly

parallel.

Bezirganyan & Drmeyan (1981) showed that in the case of

deviations from the ideal construction of a multiblock inter-

ferometer, or the existence of a narrow air gap (non-diffrac-

tion zone) between the blocks of a two-block interferometer,

phase shifts arise between the interfering waves (the beams

are shifted with respect to one another), thus leading to the

formation of interference bands. These patterns can be called

shift patterns (shift fringes or lines).

The formation of shift bands in two-block interferometers is

nearly unavoidable; even in ideal two-block interferometers,

the superimposing beams are shifted with respect to one

another, leading to the formation of shift fringes.

Ohler & HaÈrtwig (1999) showed how the theory of moireÂ

fringes on X-ray diffraction topographs of bi-crystals can be

derived from the dynamical theory for re¯ection and trans-

mission cases.

Yoshimura (1991, 1996) considered the gap width of a bi-

crystal in comparison with the PendelloÈsung length. X-ray

moireÂ topography was discussed by Ohler et al. (1996, 1997)

and Prieur et al. (1996); in particular, Ohler et al. (1996)

described moireÂ fringes observed on X-ray diffraction topo-

graphs of silicon on insulator structures (produced by the

implantation of oxygen) and determined the components of

the relative strain tensor from these patterns.

The above-mentioned ideas justify the necessity of a

detailed investigation of the mechanism of X-ray diffraction

shift patterns in general, and the determination of the sign of

the difference in interplanar distances in particular. These two

issues are considered in the present paper.

2. Dependence of shift-fringe period on the sign of the
difference between interplanar distances

As is very well known, if the re¯ecting planes of crystals are

similarly oriented (exactly parallel) and the interplanar

distances are different �d2 ÿ d1 � �d � then, regardless of the

sign of �d, i.e. regardless of on which block the primary beam

is incident, we obtain the expression

� � d1d2=jd2 ÿ d1j ' d2
0=j�dj �1�



for the periods of dilatation moireÂ patterns, where d0 is the

mean value of d1 and d2. However, it has been shown both

theoretically and experimentally that (1) is an approximation

(Pinsker, 1982); it is inapplicable for real experimental

conditions.

A more precise and detailed investigation shows that �
depends on the sign of difference �d, i.e. on the incidence

direction of the primary beam.

We will consider this dependence ®rst theoretically, in a

spherical wave approximation, and then experimentally.

2.1. Theoretical considerations

Let us determine within the framework of Kato's spherical

wave theory (Kato, 1968a,b; Polcarova, 1978a,b, 1980) the

expressions for amplitudes and intensity distributions of X-ray

waves diffracted in the direction of the ®rst re¯ection in a two-

crystal interferometer with a narrow air gap (Fig. 1), where the

interplanar distance d between re¯ecting planes in one of the

blocks has a fractional change �d=d ' 10ÿ8 ÿ 10ÿ5.

To obtain moireÂ patterns with visible periods of fringes in

X-ray topographs, the problem according to Bezirganyan &

Drmeyan (1979) will be considered for the case of Borrmann

transmission of X-rays in both crystals in the symmetric Laue

case. The diffraction geometry in real space is shown in Fig. 2.

The intensity distribution of the interference ®eld at the exit

surface of the second block is given by the following expres-

sion (Tanemura & Lang, 1973):

I�r� � j�0g�r� ��gg�r�j2
� �1=16��2E2�j�j=kZ� exp�ÿ�0t sec �B1�
� �j�1j2 exp�ÿ2�iu� � j�2j2 exp�ÿ2�i��
� 2j�1jj�2j exp�ÿ�i�u� ��� cos��r�uÿ ��
ÿ k��B�t3 ÿ 2t2�k��B � 2��g � r�	: �2�

Here �0g and �gg are the waves diffracted in the ®rst crystal in

directions of transmission and re¯ection, respectively, and the

waves diffracted in the second crystal in the direction of the

®rst re¯ection,

j�1j �
��1 ÿ �2�uÿ1=2��r�

2
1 ÿ k��B�2u=2�

��1�r�1=2��r�
5
1 ÿ 3�t1k��B�2u3�1=2

;

j�2j �
��1 � �3��ÿ1=2��r�

2
1 ÿ k��B�3�=2���r�1 ÿ k��B��

��1�r�3=2��r�
5
1 ÿ 3�t1k��B�3�

3�1=2
;

u � ��2
1 ÿ �2

2�1=2; � � ��2
1 ÿ �2

3�1=2;

�1 � �t; �2 � xÿ �t; �3 � xÿ ��t � 2t3�; �3�
t � t1 � t2; � � sin �B1; � � k���g�g�1=2 cosec 2�B1; �4�
�0 � k�0i; �g � g2 ÿ g1; ��B � �B2 ÿ�B1; jkj � k;

E is the amplitude, k is the wavevector of the plane-wave

component in a vacuum, g1 and g2 are reciprocal-lattice

vectors in the ®rst and second crystals, respectively, vector r

de®nes the location of the observation point at the outcome

surface of the second crystal, X and Z are the components of

this vector, �g is the Fourier factor of order g (g � 0; g) of the

polarizability of the crystal for X-ray waves, ��g is the conjugate

Fourier factor for polarizability, �0i is the imaginary part of �0,

�r and �i are the real and imaginary parts of �, respectively,

�B1 and �B2 are the exact Bragg angles in kinematic theory

for the ®rst and second crystals, respectively, t1 and t2 are the

thicknesses of the ®rst and second crystals, t3 is the air gap

thickness, and �0 is the normal linear absorption coef®cient of

X-ray waves.

In (2) for the intensity distribution, the ®rst two terms

within the braces {} are slowly varying functions of coordinate

X ; hence the oscillations of the intensity distribution are

conditioned by the third term. From the condition

�r uÿ �� � ÿ k��B�t3 ÿ 2�t2k��B � 2��g � r � 2�`; �5�

where ` is an integer, we can calculate the period of the

interference bands.

Taking into account (3) and (4) and the condition t3 � t, the

®rst term on the left-hand side of (5) can be represented in the

following approximate form:

�r�uÿ �� � �2�x0t3=t� tan �B��1ÿ x02=t2 tan2 �B�ÿ1=2; �6�

where x0 is the coordinate of the observation point at the exit

surface of the second crystal and � � �=�r sin �B is the

extinction depth. The last term on the left-hand side of (5) is

equal to

2��g � r � 2���d=d2�x0: �7�

Substituting (6) and (7) into (5) and using the approxima-

tion t ' 2t2, we obtain the following expression for the coor-

dinate x0k, where the intensity reaches its maximum value:
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Figure 1
Two-crystal interferometer with a narrow air gap, showing the ray path.

Figure 2
Diffraction geometry in a real space.



2�x0kt3

t� tan �B�1ÿ x0k2=t2 tan2 �B�1=2
� 2�

�d

d2
x0k

ÿ 2�t2k��B�1� t3=t� � 2�`: �8�
Let us introduce the following auxiliary notations in (8):

t3=� � a1; t tan �B � a2; �d=d2 � a3;

2�t2��B=��1� t3=t� � n; `� n � m;

where � is the wavelength. Then after some transformation we

obtain the following equation of fourth order for x0i:

a2
3�x0i�4 ÿ 2a3m�x0i�3 � �m2 � a2

1 ÿ a2
2a2

3��x0i�2
� 2a3a2

2mx0i ÿm2a2
2 � 0: �9�

The solution of (9) gives the positions of the intensity

distribution maxima, x0i, where i is the number of each

maximum. The period of interference bands can be found

from the expression

�i;i�1 � x0i�1 ÿ x0i: �10�
It is obvious that the period of the interference bands

depends on the sign of �d and the direction of �g, i.e. on the

sign of the scalar product 2��g � r. From (9) and (10), the

periods �i;i�1 (i � 0; 1; 2; 3; 4) for the ®rst ®ve interference

bands, closest to the point C (Fig. 2), are calculated with an

accuracy of 1 mm at values of �d=d � 2� 10ÿ6 andÿ2� 10ÿ6

(i.e. d2 < d1 and d2 > d1) for a two-crystal interferometer with

a t1 � t2 � 0:5 cm-thick silicon crystal and a gap width of

t3 � 350 mm for Mo K� radiation and re¯ection 220. The

results are presented in Table 1.

In the case of �d< 0 �d2 < d1� at j�dj=d � 2� 10ÿ6, the

period of the interference bands is signi®cantly larger. Thus

theoretical calculations show that the magnitude of inter-

ference-band period essentially depends on the sign of �d.

2.2. Experimental

A two-crystal system prepared from a nearly perfect silicon

single crystal grown by the ¯oating-zone method, placed on a

common base, was used for the experimental investigation of

the dependence of shift fringes on the sign of the interplanar

distance difference between the re¯ecting planes. The blocks

were placed so close to one another that the waves diffracted

in the ®rst crystal were superimposed at the entrance surface
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Figure 3
Photographs of section topographs for various cases.



of the second crystal. The directions of the re¯ecting planes in

both crystals were strictly parallel. The sample was prepared

from a dislocation-free silicon single crystal, cut by a thin

diamond saw out of a parallelepiped silicon bar (Fig. 1). To

obtain the difference of interplanar distances between the

re¯ecting planes, one of the crystals was heated, trying to

avoid a temperature gradient.

Experiments investigating the dependence of shift-fringe

period on the sign of the interplanar distance difference �d

were carried out in three different ways:

(i) with both crystals at room temperature,

(ii) with the ®rst crystal heated and the second at room

temperature,

(iii) with the second crystal heated and the ®rst at room

temperature.

Experiments were carried out under conditions corre-

sponding to those used for the theoretical calculations. The

photographs of section topographs are presented in Fig. 3. The

®rst and last topographs shown in Figs. 3(a) and 3(b) were

obtained at room temperature. Other topographs were

obtained during a gradual increase of temperature in sepa-

rate crystals. The current strength in the heater is given

below the topographs (a current increase leads to an

increase of crystal temperature). From the obtained photo-

graphs we can see that

(i) Heating the ®rst crystal results in an increase of shift-

fringe period, while heating the second crystal decreases this

period.

(ii) After heating (zero current in the heater), the periods of

the shift fringes regain their initial values [see the ®rst and last

topographs in Figs. 3(a) and 3(b)].

(iii) At high temperatures (high current in the heater), the

shift fringes are initially distorted (impact of the temperature

gradient), then they disappear.

Thus, our experiments (in agreement with theoretical

calculations) reveal that the period of the shift fringes depends

on the sign of the difference in the interplanar distances.

Similar results were obtained for the case in which the inci-

dence direction of the initial beam was changed while heating

the same crystal.
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Table 1
The dependence of interference-band period on �d=d.

�d=d �0;1 �1;2 �2;3 �3;4 �4;5

2 � 10ÿ6 122 122 120 118 115
ÿ2 � 10ÿ6 373 323 246 184 140


